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ABSTRACT: Systematic sequencing of environmental SSU rDNA genes amplified from different marine
ecosystems has uncovered novel eukaryotic lineages, in particular within the alveolate and stramenopile
radiations. The ecological and geographic distribution of 2 novel alveolate lineages (called Group I and
II in previous papers) is inferred from the analysis of 62 different environmental clone libraries from
freshwater and marine habitats. These 2 lineages have been, up to now, retrieved exclusively from
marine ecosystems, including oceanic and coastal waters, sediments, hydrothermal vents, and perma-
nent anoxic deep waters and usually represent the most abundant eukaryotic lineages in environmen-
tal genetic libraries. While Group I is only composed of environmental sequences (118 clones), Group II
contains, besides environmental sequences (158 clones), sequences from described genera (8) (Hema-
todinium and Amoebophrya) that belong to the Syndiniales, an atypical order of dinoflagellates exclu-
sively composed of marine parasites. This suggests that Group II could correspond to Syndiniales, al-
though this should be confirmed in the future by examining the morphology of cells from Group II. Group
Il appears to be abundant in coastal and oceanic ecosystems, whereas permanent anoxic waters and hy-
drothermal ecosystems are usually dominated by Group I. Based upon the similarity of partial sequences,
we organized these 2 groups into clusters. The diversity of Group II (16 clusters) is wider than that of
Group I (6 clusters). Two clusters from Group I have a widespread distribution and are found in all ex-
plored marine habitats. In contrast, all other clusters seem to be limited to specific marine habitats. For
example, some clusters belonging to Group I and Group II are only detected in extreme environments
(anoxic and hydrothermal vents), whereas many clusters from Group II have only been retrieved from
coastal waters. We determined near-complete SSU rRNA gene sequences for 26 environmental clones,
selected in order to obtain at least one complete sequence per cluster. Phylogenetic analyses (maximum
likelihood, neighbor joining, maximum parsimony, and Bayesian reconstruction) based upon complete
sequences all concurred to place both Group I and II as sister lineages of dinoflagellates. This result
contradicts several published studies, which placed both groups within dinoflagellates.
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INTRODUCTION

In the past 15 yr, direct sequencing of genes such as
the one coding for the small subunit of ribosomal RNA
(SSU) in environmental samples has revealed an unex-
pected diversity within the smallest size fraction of the
marine plankton. The ubiquitous presence of com-
pletely novel lineages, with no representatives in cul-
tures, has been established for the 3 domains of life,
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Bacteria (Giovannoni et al. 1990), Archaea (Delong
1992, Fuhrman et al. 1992), and more recently Eukary-
ota (Diez et al. 2001, Léopez-Garcia et al. 2001, Moon-
van der Staay et al. 2001). Two phyla dominate eukary-
otic SSU rRNA gene sequences retrieved in the small
size fractions from marine environmental samples:
alveolates and stramenopiles (L6pez-Garcia et al. 2001,
Moon-van der Staay et al. 2001). A phylogenetic analy-
sis of environmental sequences belonging to the marine
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stramenopiles has been recently published (Massana et
al. 2004b). In this paper, we identify clusters within
each group, a necessary step prior to quantitative stud-
ies relying on specific oligonucleotide probes detected
by fluorescent in situ hybridization (FISH) or quantita-
tive PCR (qPCR). Our analysis permits assessment of
the ecological distribution of the major clusters in
marine waters. Our conclusions aid in choosing clones
for which the SSU rRNA gene could be fully sequenced
since long sequences are necessary to resolve phyloge-
netic relationships among related groups.

The objective of the present study parallels that of
Massana et al. (2004b) but for ‘novel' marine alveolates.
Sequences belonging to this group often make up a sig-
nificant fraction of clones retrieved from marine waters
or hydrothermal vent environments (Moon-van der
Staay et al. 2001, Edgcomb et al. 2002, Stoeck et al.
2003, Romari & Vaulot 2004, Medlin et al. 2006).

Alveolates are characterized by the presence of
membrane-bound flattened vesicles named alveoli as a
synapomorphic character (Cavalier-Smith 1993, Pat-
terson 1999). Alveolates include 3 main groups of pro-
tists (ciliates, dinoflagellates, and apicomplexans),
many of which are parasites, e.g. all apicomplexans
including the causative agents of malaria, Plasmodium,
and of toxoplasmosis, Toxoplasma. Alveolates also
include important free-living organisms that can be
active marine predators (ciliates) or develop all transi-
tional feeding modes from phototrophy to heterotro-
phy. For example, dinoflagellates can be photosyn-
thetic, phagotrophic, mixotrophic, or even parasitic.
Other enigmatic protists have recently been related to
these 3 main groups. This was the case for the parasitic
Perkinsozoa, which have been considered as the earli-
est diverging sister lineage to the dinoflagellates
(Norén et al. 1999, Saldarriaga et al. 2003, Leander &
Keeling 2004) or the predatory flagellates belonging to
the genus Colpodella, a sister lineage of apicomplex-
ans (Kuvardina et al. 2002, Leander et al. 2003b).

In the present study, we undertake a complete
analysis of the genetic diversity of environmental SSU
TRNA gene sequences related to 2 novel alveolate lin-
eages named Group I and Group II by several authors
(Lopez-Garcia et al. 2001, Moreira & Lépez-Garcia
2002). These environmental sequences were obtained
from 62 environmental genetic libraries (Table 1),
which cover a range of aquatic ecosystems, in particu-
lar fresh, coastal, and oceanic waters, sediments, as
well as deep-sea hydrothermal vents (Table 1). We first
analyzed partial SSU rRNA sequences. This helped us
to delineate clusters and to analyze their ecological
distribution. We then determined complete SSU rRNA
gene sequences for 26 environmental clones, and ana-
lyzed the position of Groups I and II within alveolates
by different phylogenetic methods. We finally discuss

the ecological distribution and genetic diversity of
these 2 novel alveolate lineages.

MATERIALS AND METHODS

Genetic libraries. We analyzed 62 environmental
genetic libraries of the 18S rRNA gene (Table 1). Sam-
ple filtration, primers, and number of clones analyzed
for each library are listed in Table 1. All genetic
libraries used in this study have been published, with
the exception of OLI04660, for which water was col-
lected from 60 m depth in the equatorial Pacific Ocean
(1°S, 150°W) during the OLIPAC cruise in November
1994. Sample collection, DNA extraction, and amplifi-
cation were as described in Moon-van der Staay et al.
(2001). PCR products were cloned using the TOPO-TA
cloning kit (Invitrogen) following the manufacturer's
recommendations. The presence of 18S rRNA inserts
in colonies was checked by PCR amplification. Positive
clones were analyzed by RFLP using the restriction
enzyme Haelll as explained in Romari & Vaulot (2004).
Cloned fragments representative of each RFLP type
were partially sequenced (550 bp) by Qiagen Ge-
nomics Sequencing Services using the internal primer
Euk528f (5'-CCG CGG TAA TTC CAG CTC-3).

For a subset of libraries (Roscoff in France, Blanes in
Spain, Helgoland in Germany, and Olipac in the
Pacific Ocean), we determined near-complete SSU
TRNA sequences (about 1800 bp) for 26 clones for
which only partial sequences were previously avail-
able (Massana et al. 2004a, Romari & Vaulot 2004,
Medlin et al. 2006). For these sequences, the original
names of the clones are conserved and new accession
numbers are provided. For Roscoff and Olipac clones,
sequencing reactions were performed with a Big Dye
v.3 kit (Applied Biosystems) and an ABI PRISM model
3100 automated sequencer (Applied Biosystems).
For Helgoland and Blanes clones, sequences were
obtained from the Qiagen Genomics Sequencing
Services. Sequences were submitted to the CHECK_
CHIMERA program at the Ribosomal Database project
(www.rdp.cme.msu.edu/html) and were subjected to
a BLAST search on the National Center for Biotech-
nology Information web server (www.ncbi.nlm.nih.
gov). New sequences were deposited in GenBank:
DQ138055 to DQ138059 for partial sequences from
Equatorial Pacific; DQ145103 to DQ145114 for com-
plete sequences from Equatorial Pacific; DQ186525 to
DQ186538 for complete sequences from coastal waters
(Roscoff, Blanes, and Helgoland).

Phylogenetic analyses. Environmental sequences
belonging to novel alveolates Group I and Group II
from the genetic libraries listed in Table 1 and se-
quences from a selection of related organisms belong-
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ing to alveolates were imported from GenBank. Three
different alignments were built, i.e. partial sequences
belonging to Group I, partial sequences belonging to
Group II, and complete sequences of representative
alveolates. Sequences were first aligned using the
ClustalW multiple alignment tool integrated to the
sequence editor BioEdit (Hall 1999), and alignments
were then improved by hand. These 3 alignments are
available from our web site: www.sb-roscoff.fr/Phyto/
index.php?option=com_docman&task=doc_download
&gid=216. Regions with significant variation were
automatically removed using the Gblocks software
(www1l.imim.es/~castresa/Gblocks/Gblocks.html),
with optimized parameters for rRNA alignments (mini-
mum length of a block, 5; allowing gaps in half of the
positions). Each alignment was analyzed by 3 different
phylogenetic methods: maximum likelihood (ML),
neighbor joining (NJ), and maximum parsimony (MP)
using PAUP*4.0b10 (Swofford 2002). Different nested
models of DNA substitution and associated parameters
were estimated using Modeltest v.3.06 (Posada &
Crandall 1998). These settings were used to perform
ML and NJ analyses. A heuristic search procedure
using the tree bisection/reconnection branch swap-
ping algorithm (setting as in MP) was performed to
find the optimal ML tree topology. In each case, we
tried more than 70000 rearrangements. For MP, the
number of rearrangements was limited to 5000 for
bootstrap replicates. Starting trees were obtained by
randomized stepwise addition (number of replicates =
20). Bootstrap values for NJ and MP were estimated
from 1000 replicates. We additionally used Bayesian
reconstruction for the analysis of complete sequences
with MrBayes, v.3.0b4 (Huelsenbeck & Ronquist 2001).
The GTR model of substitution was used, taking into
account a gamma-shaped distribution of the rates of
substitution among sites. For each dataset, the chains
were run for 2000000 generations. Trees were sam-
pled every 100 generations. The first 5000 sampled
trees, corresponding to the initial phase before the
chains reach stationarity (burn-in), were discarded.

RESULTS

Overall, 38 of the 62 SSU rRNA gene (rDNA) envi-
ronmental genetic libraries analyzed contained se-
quences belonging to the novel alveolate lineages
called Group I and Group II (Table 1). Size fraction,
primers used during the PCR amplification, and num-
ber of clones analyzed were important factors of vari-
ability (Table 1). For example, Group I and Group II
were not detected for size fractions smaller than 1.6 pm
(libraries ANT37 and ANT12, Table 1). Coverage, the
number of clones actually sequenced, is also critical.

This probably explains why no environmental novel
alveolate sequences were detected in library NA11 for
which coverage is very low (17 clones). In fact, alveo-
lates were detected in library NA37, built by the same
authors using a sample from the same location
(Table 1). Primers may also play a role on the PCR
amplification of such organisms. Primers used for the
62 libraries (Fig. 1) are quite similar. They may have
identical nucleotide composition but different names
(18S-82F and EK-82F), have different lengths but still
be located in the same region (EukA/Euk328f/EK-1F
and sB/ EukB), or differ by the addition of degenerate
positions (82FE compared to 18S-82F, 1492R compared
to U1492R, Euk329r compared to sB). All of these
primers should in theory allow amplification of the
majority of known environmental SSU rDNA sequen-
ces belonging to the 2 novel alveolate lineages (all the
nucleotide positions have <10% of mismatches with
the available complete SSU rDNA sequences), with 2
exceptions. Primer 360FE has a mismatch with almost
all sequences belonging to Group II (the T at position
14 is usually a C in Group II), whereas primer s12.2 has
a mismatch with almost all sequences belonging to
Group I (the G at position 15 of the primer is usually a
C in Group I). The 3’ end of reverse primers Euk329r,
sB, EukB, and 18S-1520R does not target some
sequences of Amoebophrya strains, which belong to
Group II (AF472553, AF472554, AF472555, AY208892,
AY208893, AY208894). Most environmental genetic
libraries have been constructed using EukA/ EukB or
Euk328f/Euk329r, which are quite similar in their posi-
tion and base composition and therefore probably
amplify similarly the sequences of these organisms.

Neither of the lineages was ever detected in fresh-
water samples (seawater or sediments), whatever the
methodology used (Table 1). They were also absent
from salt marshes (libraries 45, 46) and anoxic sedi-
ments (libraries 13, 14). They were not observed in
some hydrothermal ecosystems, such as hydrothermal
fluids or microcolonizers (library 18, 48 to 51) but pre-
sent in others (libraries 16, 17, 19 to 22, 47). In the end,
a total of 284 environmental partial sequences were
considered (118 belonging to Group I and 158 to
Group II).

Generally speaking (although there are some
notable exceptions), Group II clones are abundant in
coastal and oceanic ecosystems (Moon-van der Staay
et al. 2001, Romari & Vaulot 2004, Medlin et al. 2006),
whereas permanent anoxic waters and hydrothermal
ecosystems are usually dominated by Group I (Edg-
comb et al. 2002, Stoeck & Epstein 2003). The phy-
logeny of Group I and Group II was analyzed sepa-
rately by ML, NJ, and MP. Clusters were defined
within these 2 groups using the following set of crite-
ria: (1) a cluster contains environmental sequences
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FORWARD primers
5 15 25 35 45 55
R R R I R R B I R IR N [
OLI11115 3’-ACCTGGTTGA TCCTGCCAGT AGCCATATGC TTGTCTCAAA GATTAAGCCA TGCATGTCTC-5'
(Euka) CTGGTTGA TCCTGCCAGT A (185-42F) CTCAAR GAYTAAGCCA TGCA
(Euk328£) ACCTGGTTGA TCCTGCCAG
(EK-1F) CTGGTTGA TCCTGCCAG

65 75 85 95 105 115
R R [ IR R (RN IR ISR IR IR RN I
OLI11115 3’-AGTATAAGTC TTCACACGGC GAAACTGCGA ATGGCTCATT AAAACAGTTA TAGTTTACAC-5'
(18S-82F) CTGCGA AFGGCTC
(EK-82F) CTGCGA ATGGCTC
(82FE) DCTGYGA AYGGCTC
365 375 385 395 405 415

e e e e e e e I L ey |
OLI11115 3’'-GAGTATTAGG GTACGATTCC GGAGAGGGAG CCCGAGAAAC GGCTACCACA TCTAAGGAAG-5'
(EUK309F) CC GGAGAGGGAG CCH{GA
(360FE) C GGAGARGGNG CMEGAGA

545 555 565 575 585 595
R e B Rl e R I T R I e
OLI11115 3'-AATTGGAGGG CAAGTCTGGT GCCAGCAGCC GCGGTAATTC CAGCTCCAAT AGCGTATGTT-5’
(U514F) GT GCCAGCMGCC GCGG
(E528F) CGGTAATTC CAGCTCC

965 975 985 995 1005 1015

R e R B R T R I T R I e
OLI11115 3'-CATTGATCAA GAACGAAAGT AAGGGGATCG AAGACGATTA GATACCGCCG TAGTCTTTAC-5’

(s12.2) GATYA GATACCGTCg TAGTC

REVERSE primers

5 15 25 35 45 55
J O e L I [ P [ I |
OLI11115 5’TGATCCTTCY GCAGGTTCAC CTACGGAAAC CTTGTTACGA CTTCTCCTTC CTCTAGACGA 3’
(Euk329r) GCAGGTTCAC
(sB) GCAGGTTCAC CTAC
(EukB) GCAGGTTCAC CTAC
(18s- 1520R) GCAGGTTCAC CTAC

(18S-1498R) CAC CTACGG. C CITGTTA
(U1492R) AC CTTGTTACGA CTT
(1492R) AC CTTIGTITACGR CTT

125 135 145 155 165 175
R I R R RN R B I [ [T B
OLI11115 5'-TTATTCACCG GATAGTACAA TCGGTAGGAG CGACGGGCGG TGTGTACAARA GGGCAGGGAC-3’
(1391RE) GGGCGG TGTGTACAAR GRG

Fig. 1. Primers used to amplify SSU rDNA eukaryotic sequences for the 62 genetic libraries analyzed in this study. The number of
complete environmental SSU rRNA sequences that have different nucleotide composition from primers is indicated by different
tones. White: all sequences match the primer; light grey, dark grey, and black correspond, respectively, to 1 to 5%, 5 to 10 %, and
>10 % of the sequences having a different nucleotide composition at this position. The environmental sequence named OLI11115
is used as reference for the localization of primers (3’ to 5" direction for forward primers and 5’ to 3' direction for reverse primers)

from at least 3 different sources (different genetic Within Group [, 5 clusters were detected (Fig. 2).
libraries or cultivated species), (2) a cluster is sup- Fifty percent of the environmental sequences belong to
ported by the 3 tree construction methods (NJ, ML and cluster I-1. This cluster contains sequences from all
MP), and (3) bootstrap values at the cluster node are marine habitats considered (coastal waters, surface
higher than 80 % with NJ and MP. For clusters fulfilling oceanic waters, deep waters, and hydrothermal vent
these criteria, the degree of identity percent among sediments). This cluster is for example present in all
environmental sequences belonging to the same clus- libraries from Blanes (NW Mediterranean Sea),

ter is generally higher than 90 %. throughout the whole year. Its occurrence is restricted
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Fig. 2. Phylogenetic analysis of partial SSU rRNA sequences belonging to novel alveolates Group I. Maximum likelihood tree
based upon 118 environmental sequences. Three sequences of apicomplexans (Sarcocystis muris, Toxoplasma gondii, and
Cyclospora colobii) were treated as outgroup (removed from the tree for clarity). The Gblock software retained 480 positions for
phylogenetic analyses from the 516 initial nucleotides. A GTR+G model was selected by Modeltest 3.06 using the following para-
meters: Lset Base = (0.2627 0.1810 0.2622), Nst = 6, Rmat = (1.0000 2.8775 1.0000 1.0000 4.6908), Rates = gamma, Shape = 0.5006,
Pinvar = 0 (-InL = 6309.34567). The scale bar corresponds to 0.1 % sequence divergence. Neighbor-joining and maximum parsi-
mony bootstrap values are indicated at the nodes of major branches (1000 replicates in each case, values >70% shown). Dark
lines join sequences that share more than 90 % sequence identity. Clusters are indicated in grey (for the procedure of cluster def-
inition see text). The marine habitats from which sequences have been retrieved are indicated for each cluster by tones of differ-
ent % of black, from left to right. Left and 20 % grey: coastal ecosystems; middle left and 40 % grey: oceanic surface waters; mid-
dle right and 60 % grey: deep waters (oxic or anoxic); right and 80% grey: hydrothermal vents. White indicates absence of
environmental sequences belonging to novel alveolates Group I in corresponding habitats (result restricted to genetic libraries
analyzed in this study)

-
-

to 2 genetic libraries from Roscoff in the English Chan-
nel (RA001219 and RA010613), and 3 genetic libraries
from Helgoland in the North Sea (He000323,
He001206 and He010218). Cluster I-4 is also wide-
spread in marine ecosystems. In contrast, clusters I-2
and I-3 have been exclusively retrieved from deep
marine waters or hydrothermal vent sediments. Both
clusters include environmental sequences retrieved
from the Atlantic (Lépez-Garcia et al. 2003) as well as
from the Pacific (Edgcomb et al. 2002). Finally, cluster
1-5 is only composed of sequences retrieved from 3 dif-
ferent genetic libraries, namely from Pacific surface
waters, Antarctic deep waters, and NW Mediterranean
coastal waters (Fig. 2).

In comparison, the genetic diversity of alveolate
Group II is much wider (Fig. 3). We were able to define
16 clusters. However, 28 environmental sequences
were too divergent to be included in any of these clus-
ters; therefore, additional clusters probably exist and
will have to wait for additional sequences in order to be
further characterized. Most of the clusters were retrie-
ved exclusively from surface marine waters (clusters II-
1,2,3,4,5,8,10,11, 12, 13, and 16), whereas 2 clusters
(II-9 and 15) are restricted to extreme environments
(anoxic or deep waters and hydrothermal sediments).
In contrast to Group I, no cluster contains sequences
retrieved from both surface waters and deep ecosys-
tems. Sequences from the parasite Amoebophrya spp.
are present in 4 independent clusters (II-1, 2, 3, and 4),
that appear to be restricted to coastal and oceanic sur-
face waters. Clusters II-1, 3, 4, 8, and 10 contain the
largest number of sequences.

Based on this analysis of partial sequences, we
selected 26 clones for complete sequencing of the
rRNA gene. We aimed at obtaining at least one com-
plete sequence per cluster. Analysis of these se-
quences revealed a probable chimera, the sequence
RA010613.20, for which the beginning of the gene
appear to be related to stramenopiles. Environmental
sequence DH145-EKD20 was also confirmed to be a
chimera (Berney et al. 2004). Both sequences were
removed from the analyses of complete sequences.

Full length sequences, together with those already
available for other representative alveolates, were
analyzed using NJ, MP, ML, and Bayesian methods
(Fig. 4), the latter 2 providing similar tree topologies.

In agreement with published analyses, ciliates are
the most basal lineage to emerge within alveolates
according to all 4 methods. Apicomplexa and related
flagellates (Colpodella, Cryptosporidium, Perkinsus,
and (gregarines) are grouped together by MP,
whereas Perkinsus forms an independent lineage by
NJ and Bayesian inference. Group I, Group II, and
dinoflagellates are closely related in all our phyloge-
netic analyses. Hematodinium is always placed at the
base of Group II, with the exception of MP (position
not supported by the bootstrap analysis). The mono-
phyly of Group I and Group II (with the exclusion of
Hematodinium) is supported by relatively high
bootstrap values for NJ and MP (better than 90 %).
The enigmatic environmental sequence OLI11005
was placed at the base of dinoflagellates with MP
and NJ, and at the base of Group II (including
Hematodinium) with Bayesian inference and ML.
None of these placements were supported by boot-
strap analyses. This sequence is closely related to the
partial environmental sequences of BL010625.44 and
RA000609.43.

DISCUSSION

‘Novel' marine alveolates belong to 2 independent
and well supported lineages, Group I and Group II.
Group lis entirely composed of environmental sequen-
ces, whereas Group Il also includes the parasite Amoe-
bophrya (Syndiniales, dinoflagellates). This organism
was described by Koeppen as Hyalosaccus ceratii
more than a century ago (1903), which renders its ‘nov-
elty’ quite relative. Furthermore, several phylogenetic
analyses suggest that the SSU rRNA sequences of
Hematodinium sp. (Syndiniales), a parasite of the blue
crab (Gruebl et al. 2002), is closely related to those of
Group II. Therefore the whole Group II may corre-
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Fig. 3. Phylogenetic analysis of partial SSU rRNA sequences belonging to novel alveolates Group II. Maximum likelihood tree
based upon the analysis of 164 sequences. Three sequences of apicomplexans were used as outgroup (removed from the tree for
clarity). The Gblock software retained 474 positions for phylogenetic analyses from the initial 534 initial position. A GTR+G
model was selected by Modeltest 3.06 using the following parameters: Lset Base = (0.2736 0.1700 0.2545), Nst = 6, Rmat = (1.0000
3.3780 1.2804 1.2804 4.9683), Rates = gamma, Shape = 0.6108, Pinvar = 0.1155 (-InL 11989.71615). Other definitions as in Fig. 2

spond to the order Syndiniales (= Syndinia) (Corliss
1984), which are partially or entirely intracellular par-
asites and truly heterotrophic (they lack any chloro-
plast). They have been observed in a great variety of
marine hosts, such as dinoflagellates, radiolarians, cili-
ates, crabs, or copepod eggs. All these parasites pro-
duce motile cells (dinospores) that have the general
appearance and swimming behavior of other dinofla-
gellates. However, important cytological diagnostic
features of dinoflagellates, such as the dinokaryon
(nucleus with permanently condensed chromosome
and without nucleosomal histones), are absent in Syn-
diniales. Our analysis, which includes 26 novel com-
plete SSU rDNA sequences and relies on 4 different
phylogenetic reconstruction methods, places these 2
alveolate lineages as independent groups closely

related to dinoflagellates. These results contradict sev-
eral previous studies that placed the enigmatic dinofla-
gellate Noctiluca scintillans at a more basal position
than Groups I and II (Moon-van der Staay et al. 2001,
Leander et al. 2003a, Berney et al. 2004, Saldarriaga et
al. 2004, Taylor 2004). Nevertheless, even after the
addition of a substantial number of novel complete
sequences, we are not able to completely elucidate the
phylogenetic placement of these lineages, since our
analyses are not supported by high bootstrap values.
More conserved eukaryotic genes, such as those cod-
ing for heat shock protein 90 (hsp90) or actin, that have
provided more robust phylogenies of alveolates (Lean-
der & Keeling 2004), are probably required to eluci-
date the position of these novel lineages relative to that
of dinoflagellates.
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Fig. 4. Bayesian phylogeny of alveolates based on the analysis of 108 nearly complete SSU rRNA sequences. Three sequences of
stramenopiles were treated as outgroup. The Gblock software retained 1473 positions for phylogenetic analyses from the 2133
initial positions. Neighbor-joining and Maximum parsimony bootstrap values (1000 replicates in each case, values >70 % shown)
are indicated at the nodes of major branches. The scale bar corresponds to 0.1 % sequence divergence. Sequences in dark belong
to known parasites from the Syndiniales. The clade, supported by high bootstrap values, formed by Amoebophrya and environ-
mental sequences and regrouping clusters 1 to 5 is outlined in grey. This tree topology is identical to that obtained by ML analy-
sis, using a GTR+G+I model (selected by Modeltest 3.06), using the following parameters: Lset Base = (0.2757 0.1787 0.2494),
Nst = 6, Rmat = (1.0746 2.9600 1.2514 1.0820 4.7079), Rates = gamma, Shape = 0.7091, Pinvar = 0.2330 (-InL 39844.13337)

-

-

Our analysis, nevertheless, yields some general
trends in the ecological distribution of these enigmatic
alveolates. Although widespread in marine waters,
these alveolate lineages have not been detected in
freshwater ecosystems. This is consistent with the fact
that all Syndiniales described so far are marine organ-
isms. Groups I and II have been retrieved from very
different marine habitats, but some clusters appear to
be restricted to specific habitats. In fact, only 2 clusters
from Group I (I-1 and I-4) have been retrieved from all
the marine habitats explored, which range from
marine surface waters (both oceanic and coastal) to
anoxic habitats, including deep ocean waters and
hydrothermal sediments. Therefore, these 2 clusters
must contain anaerobic (or anoxy-tolerant organisms),
as well as truly heterotrophic organisms. Within these
2 groups, Group I-1 contains the largest number of
environmental clones (59). This is equivalent to some
marine stramenopile clusters (MAST) that are widely
distributed among different marine systems and that
account for most clones in environmental genetic
libraries, such as MAST-1, MAST-3, MAST-4 and
MAST-7 (Massana et al. 2004b). In contrast, some clus-
ters belonging to either Group I or II have only been
detected up to now in ‘extreme’ environments (anoxic
or hydrothermal, see I-2, I-3, II-9, and II-15). Group I-2
and Group I-3 contain very closely related environ-
mental sequences that were retrieved independently
from anoxic waters and hydrothermal sediments. In
fact, deep-sea vents and anoxic organic rich ecosys-
tems (whale skeletons for example) are known to con-
tain invertebrates that are similar with respect to their
phylogeny and ecology, as both ecosystems are highly
dependent on symbiotic associations with prokaryotic
organisms (Van-Dover et al. 2002). These 2 clusters are
not directly related; consequently they probably con-
stitute secondary divergent adaptations to extreme
environments rather than having retained common
ancestral characters. These clusters could be targeted
to identify protists highly specialized to these habitats.
Many Group II clusters were only detected in coastal
ecosystems. Coastal waters represent 1/3 of the marine
habitats that have been explored by environmental
eukaryotic rDNA libraries. Consequently, it is proba-
ble that these clusters have been undersampled in
other ecosystems. Still, Group II is the dominant

eukaryotic lineage in the majority of coastal genetic
libraries, except in coastal Mediterranean Sea waters
(Blanes, Spain). Groups II-1 to II-5 form a monophyletic
assemblage that contains several sequences obtained
from different isolates belonging to the species com-
plex of Amoebophrya ceratii, a parasite that infects
marine dinoflagellates. Because these 5 clusters are
monophyletic and supported by high bootstrap values,
it is reasonable to hypothesize that all these sequences
belong to Amoebophrya ceratii-like organisms, with a
similar parasitic trophic mode. It is important to note
that the ‘Amoebophrya ceratii-like’ clusters do not con-
tain sequences from sediments or anoxic ecosystems.
In fact, all the environmental sequences from the
Amoebophrya ceratii-clusters have been retrieved
from surface waters with the exception of one (DH148-
EKD27) obtained from deep waters collected in the
Antarctic Ocean. Within the species complex Amoe-
bophrya ceratii, strains that are genetically different
have different host specificity (Coats & Park 2002,
Gunderson et al. 2002). This specificity may drastically
increase the genetic diversity of the whole group, each
genotype being specific for a reduced number of hosts.
However, in our analyses, the phylogeny of these par-
asites does not appear to be linked with the phylogeny
of their hosts. As an example, the strain of Ameo-
bophrya that parasites the dinoflagellate Prorocentrum
minimum is more closely related to the strain of Amoe-
bophrya that infect Karlodinium micrum than the
strain able to infect Prorocentrum micans (Fig. 3). The
evolutionary history of these parasites is therefore
probably different from that of their host. Dinoflagel-
lates contain both autotrophic and heterotrophic
organisms and constitute an important component of
the plankton able to colonize the whole water column.
They are also successful bloomers in coastal waters.
Other described species of Amoebophrya are able to
infect very different protists such as ciliates, Acanthar-
ians, or even other parasites (Cachon & Cachon 198%).
Considering that this group is widespread, parasitism
could therefore be an important, but largely unex-
plored process in marine ecology, on the same level
as viral lysis or flagellate predation.

In summary, the analysis provided in this paper
serves 3 purposes. First it provides the first detailed
phylogenetic analyses of 2 important novel alveolate
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lineages. Second, it suggests strongly that some clus-
ters within each of the 2 lineages correspond to highly
specialized habitats or life modes (parasitism). Third, it
forms the base to define novel oligonucleotide probes
that will help to visualize these organisms in natural
samples.
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